SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Yuan Bao Zhu)
 

Sökning: WFRF:(Yuan Bao Zhu) > Low-bandgap polymer...

LIBRIS Formathandbok  (Information om MARC21)
FältnamnIndikatorerMetadata
00003672naa a2200445 4500
001oai:research.chalmers.se:8d1eb107-dcc3-4a0e-9455-fb7ddf26e718
003SwePub
008190521s2020 | |||||||||||000 ||eng|
024a https://research.chalmers.se/publication/5103182 URI
024a https://doi.org/10.1016/j.jechem.2019.04.0072 DOI
040 a (SwePub)cth
041 a engb eng
042 9 SwePub
072 7a art2 swepub-publicationtype
072 7a ref2 swepub-contenttype
100a Shahid, Bilalu Chinese Academy of Sciences4 aut
2451 0a Low-bandgap polymers with quinoid unit as π bridge for high-performance solar cells
264 1b Elsevier BV,c 2020
520 a To construct efficient low band gap polymers, increasing the Quinone structure of the polymer backbone could be one desirable strategy. In this work, two D–Q–A–Q polymers P1 and P2 were designed and synthesized with thiophenopyrrole diketone (TPD) and benzothiadiazole (BT) unit as the core and ester linked thieno[3,4-b]thiophene (TT) segment as π-bridging, and the main focus is to make a comparative analysis of different cores in the influence of the optical, electrochemical, photochemical and morphological properties. Compared with the reported PBDTT EH –TBTT HD−i , P1 exhibited the decreased HOMO energy level of −5.38 eV and lower bandgap of 1.48 eV. Furthermore, when replaced with BT core, P2 showed a red-shifted absorption profile of polymer but with up-shifted HOMO energy level. When fabricated the photovoltaic devices in conventional structure, just as expected, the introduction of ester substituent made an obvious increase of V OC from 0.63 to 0.74 V for P1. Besides, due to the deep HOMO energy level, higher hole mobility and excellent phase separation with PC 71 BM, a superior photovoltaic performance (PCE = 7.13%) was obtained with a short-circuit current density (J SC ) of 14.9 mA/cm 2 , significantly higher than that of P2 (PCE = 2.23%). Generally, this study highlights that the strategy of inserting quinoid moieties into D–A polymers could be optional in LBG-polymers design and presents the importance and comparison of potentially competent core groups.
650 7a NATURVETENSKAPx Kemix Polymerkemi0 (SwePub)104062 hsv//swe
650 7a NATURAL SCIENCESx Chemical Sciencesx Polymer Chemistry0 (SwePub)104062 hsv//eng
650 7a NATURVETENSKAPx Fysikx Annan fysik0 (SwePub)103992 hsv//swe
650 7a NATURAL SCIENCESx Physical Sciencesx Other Physics Topics0 (SwePub)103992 hsv//eng
650 7a NATURVETENSKAPx Fysikx Den kondenserade materiens fysik0 (SwePub)103042 hsv//swe
650 7a NATURAL SCIENCESx Physical Sciencesx Condensed Matter Physics0 (SwePub)103042 hsv//eng
653 a Quinone structure
653 a Low bandgap polymer
653 a π-bridging
653 a Side-chain engineering
700a Yuan, Xiyueu Chinese Academy of Sciences4 aut
700a Wang, Qianu Chinese Academy of Sciences4 aut
700a Zhou, Diu Chinese Academy of Sciences4 aut
700a Wang, Ergang,d 1981u Chalmers tekniska högskola,Chalmers University of Technology4 aut0 (Swepub:cth)ergang
700a Bao, Xichangu Chinese Academy of Sciences4 aut
700a Zhu, D. Q.u Chinese Academy of Sciences4 aut
700a Yang, R.u Chinese Academy of Sciences4 aut
710a Chinese Academy of Sciencesb Chalmers tekniska högskola4 org
773t Journal of Energy Chemistryd : Elsevier BVg 40:2020, s. 180-187q 40:2020<180-187x 2095-4956
8564 8u https://research.chalmers.se/publication/510318
8564 8u https://doi.org/10.1016/j.jechem.2019.04.007

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy