SwePub
Sök i LIBRIS databas

  Extended search

L773:0004 2021
 

Search: L773:0004 2021 > Generation of mean ...

LIBRIS Formathandbok  (Information om MARC21)
FältnamnIndikatorerMetadata
00005023naa a2200481 4500
001oai:DiVA.org:kth-306407
003SwePub
008211216s2021 | |||||||||||000 ||eng|
009oai:DiVA.org:su-199811
024a https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3064072 URI
024a https://doi.org/10.1051/0004-6361/2020400522 DOI
024a https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-1998112 URI
040 a (SwePub)kthd (SwePub)su
041 a engb eng
042 9 SwePub
072 7a ref2 swepub-contenttype
072 7a art2 swepub-publicationtype
100a Barekat, A.u Max Planck Inst Sonnensystemforsch, Justus von Liebig Weg 3, D-37077 Gottingen, Germany.4 aut
2451 0a Generation of mean flows in rotating anisotropic turbulence :b The case of solar near-surface shear layer
264 c 2021-11-23
264 1b EDP Sciences,c 2021
338 a print2 rdacarrier
500 a QC 20211216
520 a Context. Results from helioseismology indicate that the radial gradient of the rotation rate in the near-surface shear layer (NSSL) of the Sun is independent of latitude and radius. Theoretical models using the mean-field approach have been successful in explaining this property of the NSSL, while global direct or large-eddy magnetoconvection models have so far been unable to reproduce this. Aims. We investigate the reason for this discrepancy by measuring the mean flows, Reynolds stress, and turbulent transport coefficients under conditions mimicking those in the solar NSSL. Methods. Simulations with as few ingredients as possible to generate mean flows were studied. These ingredients are inhomogeneity due to boundaries, anisotropic turbulence, and rotation. The parameters of the simulations were chosen such that they matched the weakly rotationally constrained NSSL. The simulations probe locally Cartesian patches of the star at a given depth and latitude. The depth of the patch was varied by changing the rotation rate such that the resulting Coriolis numbers covered the same range as in the NSSL. We measured the turbulent transport coefficient relevant for the nondiffusive (?-effect) and diffusive (turbulent viscosity) parts of the Reynolds stress and compared them with predictions of current mean-field theories. Results. A negative radial gradient of the mean flow is generated only at the equator where meridional flows are absent. At other latitudes, the meridional flow is comparable to the mean flow corresponding to differential rotation. We also find that the meridional components of the Reynolds stress cannot be ignored. Additionally, we find that the turbulent viscosity is quenched by rotation by about 50% from the surface to the bottom of the NSSL. Conclusions. Our local simulations do not validate the explanation for the generation of the NSSL from mean-field theory where meridional flows and stresses are neglected. However, the rotational dependence of the turbulent viscosity in our simulations agrees well with theoretical predictions. Moreover, our results agree qualitatively with global convection simulations in that an NSSL can only be obtained near the equator.
650 7a TEKNIK OCH TEKNOLOGIERx Maskinteknikx Strömningsmekanik och akustik0 (SwePub)203062 hsv//swe
650 7a ENGINEERING AND TECHNOLOGYx Mechanical Engineeringx Fluid Mechanics and Acoustics0 (SwePub)203062 hsv//eng
650 7a NATURVETENSKAPx Fysik0 (SwePub)1032 hsv//swe
650 7a NATURAL SCIENCESx Physical Sciences0 (SwePub)1032 hsv//eng
653 a hydrodynamics
653 a turbulence
653 a Sun
653 a rotation
700a Käpylä, Maaritu Stockholms universitet,Nordiska institutet för teoretisk fysik (Nordita),Aalto University, Finland; Max-Planck-Institut für Sonnensystemforschung, Germany,Max Planck Inst Sonnensystemforsch, Justus von Liebig Weg 3, D-37077 Gottingen, Germany.;Aalto Univ, Dept Comp Sci, Aalto 00076, Finland.;Nordita SU; Stockholm Univ, Roslagstullsbacken 23, S-10691 Stockholm, Sweden.4 aut
700a Käpylä, P. J.u Georg August Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany.4 aut
700a Gilson, E. P.u Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.4 aut
700a Ji, H.u Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.;Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.4 aut
710a Max Planck Inst Sonnensystemforsch, Justus von Liebig Weg 3, D-37077 Gottingen, Germany.b Nordiska institutet för teoretisk fysik (Nordita)4 org
773t Astronomy and Astrophysicsd : EDP Sciencesg 655q 655x 0004-6361x 1432-0746
856u https://doi.org/10.1051/0004-6361/202040052y Fulltext
856u https://www.aanda.org/articles/aa/pdf/2021/11/aa40052-20.pdf
8564 8u https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-306407
8564 8u https://doi.org/10.1051/0004-6361/202040052
8564 8u https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-199811

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view