SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Eivazi Hamidreza)
 

Sökning: WFRF:(Eivazi Hamidreza) > Physics-informed de...

Physics-informed deep-learning applications to experimental fluid mechanics

Eivazi, Hamidreza (författare)
Tech Univ Clausthal, Inst Software & Syst Engn, D-38678 Clausthal Zellerfeld, Germany.
Wang, Yuning (författare)
KTH,Strömningsmekanik och Teknisk Akustik,Linné Flow Center, FLOW
Vinuesa, Ricardo (författare)
KTH,Strömningsmekanik och Teknisk Akustik,Linné Flow Center, FLOW,SeRC - Swedish e-Science Research Centre
Tech Univ Clausthal, Inst Software & Syst Engn, D-38678 Clausthal Zellerfeld, Germany Strömningsmekanik och Teknisk Akustik (creator_code:org_t)
IOP Publishing, 2024
2024
Engelska.
Ingår i: Measurement science and technology. - : IOP Publishing. - 0957-0233 .- 1361-6501. ; 35:7
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • High-resolution reconstruction of flow-field data from low-resolution and noisy measurements is of interest due to the prevalence of such problems in experimental fluid mechanics, where the measurement data are in general sparse, incomplete and noisy. Deep-learning approaches have been shown suitable for such super-resolution tasks. However, a high number of high-resolution examples is needed, which may not be available for many cases. Moreover, the obtained predictions may lack in complying with the physical principles, e.g. mass and momentum conservation. Physics-informed deep learning provides frameworks for integrating data and physical laws for learning. In this study, we apply physics-informed neural networks (PINNs) for super-resolution of flow-field data both in time and space from a limited set of noisy measurements without having any high-resolution reference data. Our objective is to obtain a continuous solution of the problem, providing a physically-consistent prediction at any point in the solution domain. We demonstrate the applicability of PINNs for the super-resolution of flow-field data in time and space through three canonical cases: Burgers' equation, two-dimensional vortex shedding behind a circular cylinder and the minimal turbulent channel flow. The robustness of the models is also investigated by adding synthetic Gaussian noise. Furthermore, we show the capabilities of PINNs to improve the resolution and reduce the noise in a real experimental dataset consisting of hot-wire-anemometry measurements. Our results show the adequate capabilities of PINNs in the context of data augmentation for experiments in fluid mechanics.

Ämnesord

NATURVETENSKAP  -- Data- och informationsvetenskap -- Datavetenskap (hsv//swe)
NATURAL SCIENCES  -- Computer and Information Sciences -- Computer Sciences (hsv//eng)

Nyckelord

physics informed neural networks
machine learning
deep learning
vortex shedding
channel flow

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Hitta mer i SwePub

Av författaren/redakt...
Eivazi, Hamidrez ...
Wang, Yuning
Vinuesa, Ricardo
Om ämnet
NATURVETENSKAP
NATURVETENSKAP
och Data och informa ...
och Datavetenskap
Artiklar i publikationen
Measurement scie ...
Av lärosätet
Kungliga Tekniska Högskolan

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy