SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Luo B.)
 

Sökning: WFRF:(Luo B.) > (2020-2024) > Benchmark DEBORA :

LIBRIS Formathandbok  (Information om MARC21)
FältnamnIndikatorerMetadata
00007346naa a2200697 4500
001oai:DiVA.org:kth-351914
003SwePub
008240819s2024 | |||||||||||000 ||eng|
024a https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3519142 URI
024a https://doi.org/10.1016/j.ijmultiphaseflow.2024.1049202 DOI
040 a (SwePub)kth
041 a engb eng
042 9 SwePub
072 7a ref2 swepub-contenttype
072 7a art2 swepub-publicationtype
100a Bois, G.u Université Paris-Saclay, CEA4 aut
2451 0a Benchmark DEBORA :b Assessment of MCFD compared to high-pressure boiling pipe flow measurements
264 1b Elsevier BV,c 2024
338 a print2 rdacarrier
500 a QC 20240902
520 a A benchmark activity on two-fluid simulations of high-pressure boiling upward flows in a pipe is performed by 12 participants using different MCFD (Multiphase Computational Fluid Dynamics) codes and closure relationships. More than 30 conditions from DEBORA experiment conducted by CEA are considered. Each case is characterised by the flow rate, inlet temperature, wall heat flux and outlet pressure. High-pressure Freon (R12) at 14 bar and 26 bar is boiled in a 19.2mm pipe heated over 3.5m. Flow rates range from 2000 kg m−2 s−1 to 5000 kg m−2 s−1 and exit quality x ranges from single-phase conditions to x=0.1 which leads to a peak void fraction of α=70%. In these high pressure conditions, bubbles remain small and there is no departure from the bubbly flow regime (François et al., 2011; Hösler, 1968). However, different kind of bubbly flows are observed: wall-peak, intermediate peak or core-peak, depending on the case considered. Measurements along the pipe radius near the end of the heated section are compared to code predictions. They include void fraction, bubble mean diameter, vapour velocity and liquid temperature. The benchmark covered two phases. In the first phase of the benchmark activities, experimental data were given to the participants, allowing to compare the simulation results and to develop, to select or to adjust the models in the CMFD codes. The second phase included blind cases where the participants could not compare to the measurements. In between the two phases, possible additional model adjustments or calibrations were performed. Overall, the benchmark involved very different closures and a wide range of models’ complexity was covered. Yet, it is extremely difficult to have a robust closure for all conditions considered, even knowing experimental measurements. The wall-to-core peak transition is not captured consistently by the models. The degree of subcooling and the void fraction level are also difficult to assess. We were not capable of showing superiority of some physical closures, even for part of the model. The interaction between mechanisms and their hierarchy are extremely difficult to understand. Although departure from nucleate boiling (DNB) was not considered in this benchmarking exercise, it is expected that DNB predictions at high-pressure conditions depend strongly on the near-wall flow, temperature, and void fraction distributions. Therefore, the suitability of the closures also limits the accuracy of DNB predictions. The benchmark also demonstrated that in order to progress further in models development and validation, it is compulsory to have new measurements that include simultaneously as many variables as possible (including liquid temperature, velocity, cross-correlations and wall temperature); also, a better knowledge of the local bubble sizes distributions is the key to discriminate performances of interfacial area modelling (IATE, MUSIG or iMUSIG models, considering for instance the possibility of two classes of bubbles having totally different behaviour regarding the lift force). Following this benchmark impulse, we hope that future activities will be engaged on high-pressure boiling water experiments with a continuation of models’ comparisons and development.
650 7a TEKNIK OCH TEKNOLOGIERx Maskinteknikx Strömningsmekanik och akustik0 (SwePub)203062 hsv//swe
650 7a ENGINEERING AND TECHNOLOGYx Mechanical Engineeringx Fluid Mechanics and Acoustics0 (SwePub)203062 hsv//eng
650 7a NATURVETENSKAPx Fysikx Atom- och molekylfysik och optik0 (SwePub)103022 hsv//swe
650 7a NATURAL SCIENCESx Physical Sciencesx Atom and Molecular Physics and Optics0 (SwePub)103022 hsv//eng
653 a Benchmark
653 a DEBORA experiment
653 a High-pressure boiling flow
653 a MCFD
700a Fillion, P.u Université Paris-Saclay, CEA4 aut
700a François, F.u CEA, DES, IRESNE, Department of Nuclear Technology, CEA Centre de Cadarache, Saint-Paul-Lez-Durance, F-13108, France4 aut
700a Burlot, A.u Université Paris-Saclay4 aut
700a Ali, A. Ben Hadju Ansys Germany GmbH (ANSYS)4 aut
700a Khaware, A.u Ansys Software Pvt Ltd, Research and Development (ANSYS)4 aut
700a Sanyal, J.u Ansys Inc., Research and Development (ANSYS)4 aut
700a Rehm, M.u Framatome GmbH4 aut
700a Farges, B.u Framatome SAS, Fuel Core Physics4 aut
700a Vinauger, F.u Framatome SAS, Fuel Core Physics,4 aut
700a Ding, W.u Helmholtz Zentrum Dresden Rossendorf4 aut
700a Gajšek, A.u Jožef Stefan Institute4 aut
700a Tekavčič, M.u Jožef Stefan Institute4 aut
700a Končar, B.u Jožef Stefan Institute4 aut
700a Corre, J. M.Leu Westinghouse Electric Sweden AB4 aut
700a Li, Haipengu KTH,Kärnvetenskap och kärnteknik4 aut0 (Swepub:kth)u1ncsstq
700a Härlin, Richardu KTH,Kärnvetenskap och kärnteknik,Westinghouse Electric Sweden AB, Västerås, 72163, Sweden4 aut0 (Swepub:kth)u122ou6m
700a Jaseliūnaitė, J.u Lithuanian Energy Institute4 aut
700a Baglietto, E.u Massachusetts Institute of Technology4 aut
700a Brewster, R.u Massachusetts Institute of Technology4 aut
700a Ding, A.u Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA4 aut
700a Vlček, D.u Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Department of Nuclear Reactors, V Holesovickach 2, Prague, 18000, Czech Republic4 aut
700a Sato, Y.u Paul Scherrer Institute4 aut
700a Xiong, J.u Shanghai Jiao Tong University (SJTU)4 aut
700a Wang, H.u Shanghai Jiao Tong University (SJTU)4 aut
700a Luo, H.u Shanghai Jiao Tong University (SJTU)4 aut
700a Vyskocil, L.u UJV Rez, a.s., Department of Safety Analyses4 aut
700a Hovi, V.u VTT Technical Research Centre of Finland Ltd.4 aut
710a Université Paris-Saclay, CEAb CEA, DES, IRESNE, Department of Nuclear Technology, CEA Centre de Cadarache, Saint-Paul-Lez-Durance, F-13108, France4 org
773t International Journal of Multiphase Flowd : Elsevier BVg 179q 179x 0301-9322x 1879-3533
856u https://doi.org/10.1016/j.ijmultiphaseflow.2024.104920y Fulltext
8564 8u https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-351914
8564 8u https://doi.org/10.1016/j.ijmultiphaseflow.2024.104920

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy