SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Lucas Carlos)
 

Sökning: WFRF:(Lucas Carlos) > A green approach to...

LIBRIS Formathandbok  (Information om MARC21)
FältnamnIndikatorerMetadata
00005721naa a2200457 4500
001oai:DiVA.org:umu-221107
003SwePub
008240227s2024 | |||||||||||000 ||eng|
024a https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-2211072 URI
024a https://doi.org/10.1016/j.bcab.2024.1030362 DOI
040 a (SwePub)umu
041 a engb eng
042 9 SwePub
072 7a ref2 swepub-contenttype
072 7a for2 swepub-publicationtype
100a Rodrigues, Danielle Matiasu Bioprocess and Metabolic Engineering Laboratory (LEMeB), University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas, São Paulo, Brazil; School of Food Engineering, University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas, São Paulo, Brazil4 aut
2451 0a A green approach to biomass residue valorization :b bacterial nanocellulose production from agro-industrial waste
264 1b Elsevier,c 2024
338 a print2 rdacarrier
520 a This article aims to offer a detailed review of bacterial nanocellulose (BNC), addressing its growing global relevance and exploring sustainable approaches through the use of agro-industrial residues as viable cultivation alternatives. BNC is a biopolymer produced by different microorganisms, with Komagateibacter xylinum being the most commonly used in this process. Its distinction in relation to vegetable cellulose lies mainly in its nanometric properties, such as water retention capacity, large surface area and structural resistance. The search for alternative sources has been explored for the large-scale production of biopolymers such as polyhydroxybutyrate (PHB) and exopolysaccharides (EPS) from lignocellulosic biomass. The application of different residues from agroindustry, food and forestry as a source of carbon and nutrients in the biosynthesis of BNC has proven to be a promising strategy to make the production process economically viable. A significant advantage of the BNC biosynthesis process is the virtually natural purity of the cellulose produced, eliminating the need for expensive purification steps. There has been a significant increase in the number of patents related to the use of lignocellulosic biomass, filed by academic institutions and private companies in the last five years. In this context, this study condenses the fundamental principles of BNC, offers a trend analysis through bibliometric review and investigates the current panorama in BNC production, as well as its diverse applications in a wide range of sectors, such as medicine (medical devices, tissue engineering), packaging (biodegradable films, coatings), textiles (smart materials, functional fabrics), construction (sustainable materials), electronics (flexible electronic components) and other innovative areas that benefit from the unique properties of bacterial nanocellulose.
650 7a NATURVETENSKAPx Biologix Mikrobiologi0 (SwePub)106062 hsv//swe
650 7a NATURAL SCIENCESx Biological Sciencesx Microbiology0 (SwePub)106062 hsv//eng
653 a Alternative wastes
653 a Applications
653 a Bacteria
653 a Bibliometric analysis
653 a Biosynthesis
653 a BNC
653 a Lignocellulosic biomass
700a da Silva, Marcos Fellipeu School of Food Engineering, University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas, São Paulo, Brazil4 aut
700a Almeida, Francisco Lucas Chavesu Bioprocess and Metabolic Engineering Laboratory (LEMeB), University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas, São Paulo, Brazil; School of Food Engineering, University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas, São Paulo, Brazil4 aut
700a de Mélo, Allan Henrique Félixu School of Food Engineering, University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas, São Paulo, Brazil4 aut
700a Forte, Marcus Bruno Soaresu Bioprocess and Metabolic Engineering Laboratory (LEMeB), University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas, São Paulo, Brazil; School of Food Engineering, University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas, São Paulo, Brazil4 aut
700a Martin, Carlosu Umeå universitet,Kemiska institutionen,Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway; BioPolymers and Biomaterials Group, University of Araraquara, Araraquara, São Paulo, Brazil4 aut0 (Swepub:umu)cama0153
700a Barud, Hernane da Silvau Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway4 aut
700a Baudel, Henrique Macedou Department of Chemical Engineering, Federal University of Pernambuco, Pernambuco, Recife, Brazil4 aut
700a Goldbeck, Rosanau Bioprocess and Metabolic Engineering Laboratory (LEMeB), University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas, São Paulo, Brazil; School of Food Engineering, University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas, São Paulo, Brazil4 aut
710a Bioprocess and Metabolic Engineering Laboratory (LEMeB), University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas, São Paulo, Brazil; School of Food Engineering, University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas, São Paulo, Brazilb School of Food Engineering, University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas, São Paulo, Brazil4 org
773t Biocatalysis and Agricultural Biotechnologyd : Elsevierg 56q 56x 1878-8181
8564 8u https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-221107
8564 8u https://doi.org/10.1016/j.bcab.2024.103036

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy