SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Wang Lin)
 

Sökning: WFRF:(Wang Lin) > (2020-2024) > SynQuant :

SynQuant : an automatic tool to quantify synapses from microscopy images

Wang, Yizhi (författare)
Virginia Polytech Inst & State Univ, Bradley Dept Elect & Comp Engn, Blacksburg, VA 22203 USA.
Wang, Congchao (författare)
Virginia Polytech Inst & State Univ, Bradley Dept Elect & Comp Engn, Blacksburg, VA 22203 USA.
Ranefall, Petter, 1968- (författare)
Uppsala universitet,Avdelningen för visuell information och interaktion,Science for Life Laboratory, SciLifeLab
visa fler...
Broussard, Gerard Joey (författare)
Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA.;Princeton Univ, Princeton Neurosci Inst, Princeton, NJ 08544 USA.
Wang, Yinxue (författare)
Virginia Polytech Inst & State Univ, Bradley Dept Elect & Comp Engn, Blacksburg, VA 22203 USA.
Shi, Guilai (författare)
Univ Calif Davis, Sch Med, Dept Biochem & Mol Med, Sacramento, CA 95817 USA.
Lyu, Boyu (författare)
Virginia Polytech Inst & State Univ, Bradley Dept Elect & Comp Engn, Blacksburg, VA 22203 USA.
Wu, Chiung-Ting (författare)
Virginia Polytech Inst & State Univ, Bradley Dept Elect & Comp Engn, Blacksburg, VA 22203 USA.
Wang, Yue (författare)
Virginia Polytech Inst & State Univ, Bradley Dept Elect & Comp Engn, Blacksburg, VA 22203 USA.
Tian, Lin (författare)
Univ Calif Davis, Sch Med, Dept Biochem & Mol Med, Sacramento, CA 95817 USA.
Yu, Guoqiang (författare)
Virginia Polytech Inst & State Univ, Bradley Dept Elect & Comp Engn, Blacksburg, VA 22203 USA.
visa färre...
Virginia Polytech Inst & State Univ, Bradley Dept Elect & Comp Engn, Blacksburg, VA 22203 USA Avdelningen för visuell information och interaktion (creator_code:org_t)
2019-10-09
2020
Engelska.
Ingår i: Bioinformatics. - : Oxford University Press (OUP). - 1367-4803 .- 1367-4811 .- 1460-2059. ; 36:5, s. 1599-1606
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Motivation: Synapses are essential to neural signal transmission. Therefore, quantification of synapses and related neurites from images is vital to gain insights into the underlying pathways of brain functionality and diseases. Despite the wide availability of synaptic punctum imaging data, several issues are impeding satisfactory quantification of these structures by current tools. First, the antibodies used for labeling synapses are not perfectly specific to synapses. These antibodies may exist in neurites or other cell compartments. Second, the brightness of different neurites and synaptic puncta is heterogeneous due to the variation of antibody concentration and synapse-intrinsic differences. Third, images often have low signal to noise ratio due to constraints of experiment facilities and availability of sensitive antibodies. These issues make the detection of synapses challenging and necessitates developing a new tool to easily and accurately quantify synapses.Results: We present an automatic probability-principled synapse detection algorithm and integrate it into our synapse quantification tool SynQuant. Derived from the theory of order statistics, our method controls the false discovery rate and improves the power of detecting synapses. SynQuant is unsupervised, works for both 2D and 3D data, and can handle multiple staining channels. Through extensive experiments on one synthetic and three real datasets with ground truth annotation or manually labeling, SynQuant was demonstrated to outperform peer specialized unsupervised synapse detection tools as well as generic spot detection methods.

Ämnesord

NATURVETENSKAP  -- Data- och informationsvetenskap -- Bioinformatik (hsv//swe)
NATURAL SCIENCES  -- Computer and Information Sciences -- Bioinformatics (hsv//eng)

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy