SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Bengtson Per)
 

Search: WFRF:(Bengtson Per) > Determination of un...

Determination of uncertainty of different CFD codes by means of comparison with experimental fire scenarios

Holmstedt, Göran (author)
Lund University,Lunds universitet,Avdelningen för Brandteknik,Institutionen för bygg- och miljöteknologi,Institutioner vid LTH,Lunds Tekniska Högskola,Division of Fire Safety Engineering,Department of Building and Environmental Technology,Departments at LTH,Faculty of Engineering, LTH,Lund University, Sweden
Van Hees, Patrick (author)
Lund University,Lunds universitet,Avdelningen för Brandteknik,Institutionen för bygg- och miljöteknologi,Institutioner vid LTH,Lunds Tekniska Högskola,Division of Fire Safety Engineering,Department of Building and Environmental Technology,Departments at LTH,Faculty of Engineering, LTH,Lund University, Sweden
Yan, Zhenghua (author)
Lund University,Lunds universitet,Värmeöverföring,Institutionen för energivetenskaper,Institutioner vid LTH,Lunds Tekniska Högskola,Heat Transfer,Department of Energy Sciences,Departments at LTH,Faculty of Engineering, LTH,Lund University, Sweden
show more...
Bengtson, Staffan (author)
Brandskyddslaget, Sweden
Hagglund, Bengt (author)
Brandskyddslaget, Sweden
Dittmer, Torkel (author)
Brandskyddslaget, Sweden
Blomqvist, Per (author)
Lund University,Lunds universitet,Avdelningen för Brandteknik,Institutionen för bygg- och miljöteknologi,Institutioner vid LTH,Lunds Tekniska Högskola,Division of Fire Safety Engineering,Department of Building and Environmental Technology,Departments at LTH,Faculty of Engineering, LTH,SP Technical Research Institute of Sweden, Sweden
Tuovinen, Heimo (author)
SP Technical Research Institute of Sweden, Sweden
Lönnermark, Anders (author)
Lund University,Lunds universitet,Avdelningen för Brandteknik,Institutionen för bygg- och miljöteknologi,Institutioner vid LTH,Lunds Tekniska Högskola,Division of Fire Safety Engineering,Department of Building and Environmental Technology,Departments at LTH,Faculty of Engineering, LTH,SP Technical Research Institute of Sweden, Sweden,MERO
show less...
 (creator_code:org_t)
2009
2009
English.
In: Conference Proceedings - Fire and Materials 2009, 11th International Conference and Exhibition.
  • Conference paper (peer-reviewed)
Abstract Subject headings
Close  
  • This article will summarise the evaluation of four CFD software codes (CFX, FDS4, SMAFS and SOFIE). Evaluation was performed by means of comparing the simulation data with experimental scenarios. The scenarios were chosen to represent scenarios frequently assessed using fire safety design based on performance. The greatest difficulty during validation of CFD-codes is to find well documented relevant experiments. It is true that many large scale experiments including smoke spread have been published but many of them are not described sufficiently and are therefore impossible to use for validation. It is very unusual that data on reproducibility and repeatability is available. After an extensive discussion between the participants in the project five scenarios were chosen. Scenarios 1A (large room with vents), and scenarios 1B1 and 1B2 (corridor with vents) were well documented experiments (repeatability) with ceiling vents and ceiling jets performed earlier at SP in Boras. Scenario 2 is a tunnel fire taken from an experimental study in Boston, US. Scenario 3 is an atrium fire taken from an experimental study in Japan. Lack of well documented fires in retail premises lead us to perform a series of tests in 1/2 scale, 4.1 and 4.2 at SP in Boras. Scenario 5 is an experimental study from Australia including smoke spread from a fire room to an adjacent corridor and a room. The conditions for the simulations included information about the scenarios given above. No information about experimental results was available until the results from the simulations had been sent in to the project manager. The intention was to imitate the working conditions for a consultant as far as possible when using a CFD-simulation to estimate fire safety. In this manner the simulations are dependent on many factors such as the CFD-code used, judgement of input data of the scenarios done by the operator, operator skill etc. The results from the evaluation of the CFD codes showed that the simulation results generally were a good description of the experimental fires studied, but that limitations and specific properties of the different codes, together with the operator factor, can strongly influence the results. The detailed results of all comparisons are given in the final report of the project. It was not possible to include these detailed evaluations in this conference paper but these results are available in the main report as well as in future scientific articles.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Energiteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Energy Engineering (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Samhällsbyggnadsteknik -- Husbyggnad (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Civil Engineering -- Building Technologies (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Annan teknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Other Engineering and Technologies (hsv//eng)

Keyword

Computational fluid dynamics
Exhibitions
Experiments
Fires
Managers
Vents
Energy- and Environmental Engineering

Publication and Content Type

kon (subject category)
ref (subject category)

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view