SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Hossain M. Akhter)
 

Search: WFRF:(Hossain M. Akhter) > (2005-2009) > Structural insights...

Structural insights into the function of relaxins

Rosengren, K. Johan (author)
Högskolan i Kalmar,Naturvetenskapliga institutionen,BBCL
Bathgate, Ross A.D. (author)
Craik, David J. (author)
show more...
Daly, Norelle L. (author)
Haugaard-Kedström (published under the name Haugaard-Jönsson), Linda M. (author)
Högskolan i Kalmar,Naturvetenskapliga institutionen
Hossain, M. Akhter (author)
Wade, John D. (author)
show less...
 (creator_code:org_t)
2009-04-10
2009
English.
In: Annals of the New York Academy of Sciences. - : Wiley. - 0077-8923 .- 1749-6632. ; 1160, s. 20-26
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • The relaxin peptide hormones are members of the insulin superfamily and share a structural fold that is characterized by two peptide chains which are cross-braced by three disulfide bonds. On this framework, various amino acid side chains are presented, allowing specific interactions with different receptors. The relaxin receptors belong to two unrelated classes of G-protein-coupled receptors, but interestingly they are not selective for a single relaxin peptide. Relaxin-3, which is considered to be an extreme example of the relaxin family, can activate receptors from both classes and in fact interacts to some degree with all four receptors identified to date. To deduce how changes in the primary sequence can fine-tune the overall structure and thus the ability to interact with the various receptors, we have studied a range of relaxin-like peptides using solution nuclear magnetic resonance analysis. Three-dimensional structures of relaxin-3, insulin-like peptide 3 (INSL3), and INSL5 were determined and revealed a number of interesting features. All peptides showed a significant amount of line-broadening in certain regions, in particular around the intra-A-chain disulfide bond, suggesting that despite the disulfide bonds the fold is rather dynamic. Although the peptides share a common structural core there are significant differences, particularly around the termini. The structural data in combination with mutational studies provide valuable insights into the structure-activity relationships of relaxins.

Subject headings

NATURVETENSKAP  -- Kemi -- Organisk kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Organic Chemistry (hsv//eng)

Keyword

Organic Chemistry
Organisk kemi

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view