SwePub
Sök i LIBRIS databas

  Utökad sökning

L773:0169 3913 OR L773:1573 1634
 

Sökning: L773:0169 3913 OR L773:1573 1634 > Pore-Scale Transpor...

Pore-Scale Transport and Two-Phase Fluid Structures in Fibrous Porous Layers: Application to Fuel Cells and Beyond

Farzaneh Kaloorazi, Meisam, 1982 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Ström, Henrik, 1981 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Zanini, Filippo (författare)
Università Degli Studi di Padova,University of Padua
visa fler...
Carmignato, Simone (författare)
Università Degli Studi di Padova,University of Padua
Sasic, Srdjan, 1968 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Maggiolo, Dario, 1985 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
visa färre...
 (creator_code:org_t)
2020-11-23
2021
Engelska.
Ingår i: Transport in Porous Media. - : Springer Science and Business Media LLC. - 1573-1634 .- 0169-3913. ; 136:1, s. 245-270
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • We present pore-scale simulations of two-phase flows in a reconstructed fibrous porous layer. The three-dimensional microstructure of the material, a fuel cell gas diffusion layer, is acquired via X-ray computed tomography and used as input for lattice Boltzmann simulations. We perform a quantitative analysis of the multiphase pore-scale dynamics, and we identify the dominant fluid structures governing mass transport. The results show the existence of three different regimes of transport: a fast inertial dynamics at short times, characterised by a compact uniform front, a viscous-capillary regime at intermediate times, where liquid is transported along a gradually increasing number of preferential flow paths of the size of one–two pores, and a third regime at longer times, where liquid, after having reached the outlet, is exclusively flowing along such flow paths and the two-phase fluid structures are stabilised. We observe that the fibrous layer presents significant variations in its microscopic morphology, which have an important effect on the pore invasion dynamics, and counteract the stabilising viscous force. Liquid transport is indeed affected by the presence of microstructure-induced capillary pressures acting adversely to the flow, leading to capillary fingering transport mechanism and unstable front displacement, even in the absence of hydrophobic treatments of the porous material. We propose a macroscopic model based on an effective contact angle that mimics the effects of the such a dynamic capillary pressure. Finally, we underline the significance of the results for the optimal design of face masks in an effort to mitigate the current COVID-19 pandemic.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Naturresursteknik -- Geofysisk teknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Environmental Engineering -- Geophysical Engineering (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Samhällsbyggnadsteknik -- Byggproduktion (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Civil Engineering -- Construction Management (hsv//eng)

Publikations- och innehållstyp

art (ämneskategori)
ref (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy