SwePub
Sök i LIBRIS databas

  Utökad sökning

L773:1070 664X OR L773:1089 7674
 

Sökning: L773:1070 664X OR L773:1089 7674 > Large-scale numeric...

Large-scale numerical simulations of ion beam instabilities in unmagnetized astrophysical plasmas

Dieckmann, Mark E, 1969- (författare)
Linköpings universitet,Visuell informationsteknologi och applikationer,Tekniska högskolan
Ljung, Patric, 1968- (författare)
Linköpings universitet,Visuell informationsteknologi och applikationer,Tekniska högskolan
Ynnerman, Anders (författare)
Linköpings universitet,Visuell informationsteknologi och applikationer,Tekniska högskolan
visa fler...
McClements, KG (författare)
Linkoping Univ, Inst Technol & Nat Sci, S-60174 Norrkoping, Sweden UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
visa färre...
 (creator_code:org_t)
2000
2000
Engelska.
Ingår i: Physics of Plasmas. - 1070-664X .- 1089-7674. ; 7:12, s. 5171-5181
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Collisionless quasiperpendicular shocks with magnetoacoustic Mach numbers exceeding a certain threshold are known to reflect a fraction of the upstream ion population. These reflected ions drive instabilities which, in a magnetized plasma, can give rise to electron acceleration. In the case of shocks associated with supernova remnants (SNRs), electrons energized in this way may provide a seed population for subsequent acceleration to highly relativistic energies. If the plasma is weakly magnetized, in the sense that the electron cyclotron frequency is much smaller than the electron plasma frequency omega (p), a Buneman instability occurs at omega (p). The nonlinear evolution of this instability is examined using particle-in-cell simulations, with initial parameters which are representative of SNR shocks. For simplicity, the magnetic field is taken to be strictly zero. It is shown that the instability saturates as a result of electrons being trapped by the wave potential. Subsequent evolution of the waves depends on the temperature of the background protons T-i and the size of the simulation box L. If T-i is comparable to the initial electron temperature T-e, and L is equal to one Buneman wavelength lambda (0), the wave partially collapses into low frequency waves and backscattered waves at around omega (p). If, on the other hand, T-i much greater thanT(e) and L = lambda (0), two high frequency waves remain in the plasma. One of these waves, excited at a frequency slightly lower than omega (p), may be a Bernstein-Greene-Kruskal mode. The other wave, excited at a frequency well above omega (p), is driven by the relative streaming of trapped and untrapped electrons. In a simulation with L = 4 lambda (0), the Buneman wave collapses on a time scale consistent with the excitation of sideband instabilities. Highly energetic electrons were not observed in any of these simulations, suggesting that the Buneman instability can only produce strong electron acceleration in a magnetized plasma. [S1070-664X(00)02712-9].

Nyckelord

TECHNOLOGY
TEKNIKVETENSKAP

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy