SwePub
Tyck till om SwePub Sök här!
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:DiVA.org:uu-274645"
 

Sökning: onr:"swepub:oai:DiVA.org:uu-274645" > Reducing A Priori 2...

Reducing A Priori 239Pu Nuclear Data Uncertainty In The Keff Using A Set Of Criticality Benchmarks With Different Nuclear Data Libraries

Alhassan, Erwin (författare)
Uppsala universitet,Tillämpad kärnfysik,reaktion
Sjöstrand, Henrik, 1978- (författare)
Uppsala universitet,Tillämpad kärnfysik,Reaktion
Rochman, Dimitri (författare)
Laboratory for Reactor Physics Systems Behaviour, Paul Scherrer Institut, Villigen, Switzerland
visa fler...
Helgesson, Petter, 1986- (författare)
Uppsala universitet,Tillämpad kärnfysik,Nuclear Reactions
J. Koning, Arjan (författare)
Uppsala universitet,Tillämpad kärnfysik,IAEA,Nuclear reaction group
Österlund, Michael (författare)
Uppsala universitet,Tillämpad kärnfysik,Nuclear Reaction Group
Pomp, Stephan (författare)
Uppsala universitet,Tillämpad kärnfysik,Nuclear Reactions Group
visa färre...
 (creator_code:org_t)
2015
2015
Engelska.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • In the Total Monte Carlo (TMC) method [1] developed at the Nuclear Research and Consultancy Group for nuclear data uncertainty propagation, model calculations are compared with differential experimental data and a specific a priori uncertainty is assigned to each model parameter. By varying the model parameters all together within model parameter uncertainties, a full covariance matrix is obtained with its off diagonal elements if desired [1]. In this way, differential experimental data serve as a constraint for the model parameters used in the TALYS nuclear reactions code for the production of random nuclear data files. These files are processed into usable formats and used in transport codes for reactor calculations and for uncertainty propagation to reactor macroscopic parameters of interest. Even though differential experimental data together with their uncertainties are included (implicitly) in the production of these random nuclear data files in the TMC method, wide spreads in parameter distributions have been observed, leading to large uncertainties in reactor parameters for some nuclides for the European Lead cooled Training Reactor [2]. Due to safety concerns and the development of GEN-IV reactors with their challenging technological goals, the present uncertainties should be reduced significantly if the benefits from advances in modelling and simulations are to be utilized fully [3]. In Ref.[4], a binary accept/reject approach and a more rigorous method of assigning file weights based on the likelihood function were proposed and presented for reducing nuclear data uncertainties using a set of integral benchmarks obtained from the International Handbook of Evaluated Criticality Safety Benchmark Experiments (ICSBEP). These methods are depended on the reference nuclear data library used, the combined benchmark uncertainty and the relevance of each benchmark for reducing nuclear data uncertainties for a particular reactor system. Since each nuclear data library normally comes with its own nominal values and covariance matrices, reactor calculations and uncertainties computed with these libraries differ from library to library. In this work, we apply the binary accept/reject approach and the method of assigning file weights based on the likelihood function for reducing a priori 239Pu nuclear data uncertainties for the European Lead Cooled Training Reactor (ELECTRA) using a set of criticality benchmarks. Prior and posterior uncertainties computed for ELECTRA using ENDF/B-VII.1, JEFF-3.2 and JENDL-4.0 are compared after including experimental information from over 10 benchmarks.[1] A.J. Koning and D. Rochman, Modern Nuclear Data Evaluation with the TALYS Code System. Nuclear Data Sheets 113 (2012) 2841-2934. [2] E. Alhassan, H. Sjöstrand, P. Helgesson, A. J. Koning, M. Österlund, S. Pomp, D. Rochman, Uncertainty and correlation analysis of lead nuclear data on reactor parameters for the European Lead Cooled Training reactor (ELECTRA). Annals of Nuclear Energy 75 (2015) 26-37. [3] G. Palmiotti, M. Salvatores, G. Aliberti, H. Hiruta, R. McKnight, P. Oblozinsky, W. Yang, A global approach to the physics validation of simulation codes for future nuclear systems, Annals of Nuclear Energy 36 (3) (2009) 355-361. [4] E. Alhassan, H. Sjöstrand, J. Duan, P. Helgesson, S. Pomp, M. Österlund, D. Rochman, A.J. Koning, Selecting benchmarks for reactor calculations: In proc. PHYSOR 2014 - The Role of Reactor Physics toward a Sustainable Future, kyoto, Japan, Sep. 28 - 3 Oct. (2014).

Ämnesord

NATURVETENSKAP  -- Fysik -- Subatomär fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Subatomic Physics (hsv//eng)

Nyckelord

Nuclear data
uncertainty reduction
criticality benchmarks
Total Monte Carlo
nuclear data libraries

Publikations- och innehållstyp

vet (ämneskategori)
kon (ämneskategori)

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy