Sökning: onr:"swepub:oai:lup.lub.lu.se:24dfdeda-5006-482b-ba55-0d120dd89f7c" >
Deep learning-enhan...
Deep learning-enhanced light-field imaging with continuous validation
-
- Wagner, Nils (författare)
- European Molecular Biology Laboratory Heidelberg
-
- Beuttenmueller, Fynn (författare)
- Heidelberg University
-
- Norlin, Nils (författare)
- Lund University,Lunds universitet,Molekylär neuromodulering,Forskargrupper vid Lunds universitet,Lund University Bioimaging Center,Medicinska fakulteten,Molecular Neuromodulation,Lund University Research Groups,Faculty of Medicine,European Molecular Biology Laboratory Heidelberg
-
visa fler...
-
- Gierten, Jakob (författare)
- University Hospital Heidelberg
-
Boffi, Juan Carlos (författare)
-
- Wittbrodt, Joachim (författare)
- Heidelberg University
-
- Weigert, Martin (författare)
- Swiss Federal Institute of Technology
-
Hufnagel, Lars (författare)
-
- Prevedel, Robert (författare)
- European Molecular Biology Laboratory (EMBL Rome)
-
Kreshuk, Anna (författare)
-
visa färre...
-
(creator_code:org_t)
- 2021-05-07
- 2021
- Engelska.
-
Ingår i: Nature Methods. - : Nature Publishing Group. - 1548-7105 .- 1548-7091. ; 18:5, s. 557-563
- Relaterad länk:
-
http://dx.doi.org/10...
-
visa fler...
-
https://doi.org/10.1...
-
https://lup.lub.lu.s...
-
https://doi.org/10.1...
-
visa färre...
Abstract
Ämnesord
Stäng
- Visualizing dynamic processes over large, three-dimensional fields of view at high speed is essential for many applications in the life sciences. Light-field microscopy (LFM) has emerged as a tool for fast volumetric image acquisition, but its effective throughput and widespread use in biology has been hampered by a computationally demanding and artifact-prone image reconstruction process. Here, we present a framework for artificial intelligence-enhanced microscopy, integrating a hybrid light-field light-sheet microscope and deep learning-based volume reconstruction. In our approach, concomitantly acquired, high-resolution two-dimensional light-sheet images continuously serve as training data and validation for the convolutional neural network reconstructing the raw LFM data during extended volumetric time-lapse imaging experiments. Our network delivers high-quality three-dimensional reconstructions at video-rate throughput, which can be further refined based on the high-resolution light-sheet images. We demonstrate the capabilities of our approach by imaging medaka heart dynamics and zebrafish neural activity with volumetric imaging rates up to 100 Hz.
Ämnesord
- MEDICIN OCH HÄLSOVETENSKAP -- Klinisk medicin -- Radiologi och bildbehandling (hsv//swe)
- MEDICAL AND HEALTH SCIENCES -- Clinical Medicine -- Radiology, Nuclear Medicine and Medical Imaging (hsv//eng)
- MEDICIN OCH HÄLSOVETENSKAP -- Klinisk medicin (hsv//swe)
- MEDICAL AND HEALTH SCIENCES -- Clinical Medicine (hsv//eng)
Publikations- och innehållstyp
- ref (ämneskategori)
- art (ämneskategori)
Hitta via bibliotek
Till lärosätets databas
- Av författaren/redakt...
-
Wagner, Nils
-
Beuttenmueller, ...
-
Norlin, Nils
-
Gierten, Jakob
-
Boffi, Juan Carl ...
-
Wittbrodt, Joach ...
-
visa fler...
-
Weigert, Martin
-
Hufnagel, Lars
-
Prevedel, Robert
-
Kreshuk, Anna
-
visa färre...
- Om ämnet
-
- MEDICIN OCH HÄLSOVETENSKAP
-
MEDICIN OCH HÄLS ...
-
och Klinisk medicin
-
och Radiologi och bi ...
-
- MEDICIN OCH HÄLSOVETENSKAP
-
MEDICIN OCH HÄLS ...
-
och Klinisk medicin
- Artiklar i publikationen
-
Nature Methods
- Av lärosätet
-
Lunds universitet